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The energies and derivative couplings are computed in the vicinity of the 12A′-22A′ seam of conical
intersections for AlH2. It is shown that the reaction path for the decomposition of excited vibrational levels
of AlH2(X2A1) to Al + H2 passes quite close to the minimum energy crossing point (MECP), the minimum
energy point on the seam of conical intersections. Near the MECP the seam of conical intersections exhibits
an unusual trifurcation with aC2V portion dividing into a branch that preservesC2V symmetry and two symmetry
equivalent branches that have onlyCs symmetry.

I. Introduction

Characterization of the transition state for a chemical reaction
is frequently key to understanding the reaction mechanism and
determining the reaction rate. However, when the transition
state is located in the vicinity of a conical intersection, the
reaction rate may be affected by a phenomenon referred to as
nonadiabatic recrossing,1,2 in which branching to an upper,
nonreactive, surface reduces the observed reaction rate on the
ground-state potential energy surface. In this situation it is
essential to characterize the relevant conical intersections and
determine the interstate derivative couplings,f τ

JI(R) )
〈ΨJ(r ;R)|(∂/∂τ)ΨI(r ;R)〉r, that are responsible for the nonadia-
batic effects. Hereτ is one of the nuclear coordinatesR, and
ΨI(r ;R) is the adiabatic electronic state with energyEI(R).
Nonadiabatic recrossing may be important in the reactions

of ground-state Al(2P) with molecular hydrogen.

These reactions are of considerable practical importance, being
relevant to the use of Al-doped cryogenic hydrogen as an
energetic material. The formation of the dihydride AlH2(X2A1),
channel 1a, could limit the stability of the van der Waals
complex Al-H2 that constitutes the energetic material, while
channel 1b may be involved in the combustion of the energetic
material. Channel 1a, dihydride formation, is exoergic by∼17
kcal/mol (ref 3), while the chemical reaction, channel 1b, is
endoergic.4 The 12A1 potential energy surface has a high barrier,
∼76 kcal/mol, to the formation of the X2A1 dihydride.3 Low-
energy pathways to the dihydride involve the2B2 potential
energy surface. InC2V symmetry, pathways originating on the
2B2 potential energy surface access the dihydride via a sym-
metry-allowed2B2-2A1 conical intersection. For these con-
strained pathways, the minimum energy crossing point (MECP),
the minimum energy point on the2B2-2A1 conical intersection
seam, represents the “transition state” for the reaction. However

as discussed in section II a conical intersection point cannot be
the true transition state, so that the true reaction path must
involve Cs structures, avoiding points of conical intersection.
For Cs structures the2A1 and2B2 states become the 12A′ and
22A′ states. Preliminary calculations suggest that at the transi-
tion state deviations fromC2V symmetry are small.3 Thus
nonadiabatic recrossing may affect the rate of dihydride forma-
tion or the reverse reaction, the decay of excited vibrational
levels, resonances, of the dihydride, AlH2(X2A1, V*).
This work considers the mechanism of reaction 1, providing

an analysis of the region of the 12A′-22A′ seam of conical
intersection. This analysis will guide the construction of the
potential energy surfaces and surfaces of derivative couplings
for this reaction, which will be the subject of a future
publication. It will emerge that in the vicinity of the MECP
the apparently straightforward symmetry-allowed seam of
conical intersection becomes unexpectedly difficult to character-
ize. This difficulty is found to reflect the existence of a
trifurcation of the seam of intersection, equivalently, the
intersection of two distinct seams of conical intersection. This
unusual topology will result in complicated nonadiabatic nuclear
dynamics.
Section II recapitulates the techniques, described in detail

previously,5 used to characterize this seam of conical intersec-
tion. Also described in that section is the electronic structure
treatment of AlH2. Section III presents the results of the
calculations and the implications for reaction 1. Section IV
summarizes and discusses directions for subsequent investiga-
tions.

II. Theoretical Approach

The electronic structure calculations employ multiconfigu-
rational self-consistent-field (MCSCF)6 configuration interaction
(CI)7 wave functions. In the MCSCF/CI approach the adiabatic
electronic state,ΨI(r ;R), is expanded in a configuration state
function (CSF)7 basis:
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Al( 2P)+ H2 f AlH2(1
2A1, 1

2B2) f AlH2(X
2A1) (1a)

f AlH(X 1Σ+) + H (1b)

ΨI(r ;R) ) ∑
R)1

NCSF

cR
I (R) ψR(r ;R) (2)

7953J. Phys. Chem. A1997,101,7953-7959

S1089-5639(97)01612-5 CCC: $14.00 © 1997 American Chemical Society



so that thecI(R) satisfy

where the molecular orbitals used to build theψR(r ;R) are
obtained from a state-averaged MCSCF procedure.6

Molecular geometries will be specified by the Jacobi coor-
dinatesR ) (R,r,γ) wherer is the H1-H2 distance,R is the
distance between Al and the center of mass of H2, andγ is the
angle between the line segments corresponding toRandr, such
thatγ ) 90° for C2V geometries. See Figure 1. Points,Rx, on
the seam of conical intersections will be parametrized byr, that
is Rx(r) ≡ [R(r), r, γ(r)]. It will emerge that as the result of
the trifurcation of the seam of conical intersection,Rx(r) is not
a single-valued function ofr. It will therefore be convenient
to also denote points of conical intersection byRxj, wherej is
a number, usually defined in Table 1. As a consequence of the
trifurcation, we shall encounter the situationRx(r) ) {Rxj1,Rxj2,
Rxj3}.
A. AlH 2 Wave Functions. The calculations employ Al

(10s7p3d) and H (6s3p1d) contracted Gaussian basis sets. The
ΨI(r ;R) are described at the second-order CI level8 based on a
five-electron, six-orbital (5a′, 1a′′) active space, comprising the
Al(3s,3p) orbitals and the H(1s) orbitals and resulting in 264 775
CSFs.
B. Characterization of a Conical Intersection. In the

vicinity of an Rx the wave functions, and hence the energies
and derivative couplings, for the 12A′ and 22A′ states (denoted
I and J) can be described in terms of a set of characteristic
parameters,5 gIJ(Rx), hIJ(Rx) andsIJ(Rx):

These parameters, which can be readily determined using
analytic gradient techniques,9 enable determination of the
energies and the largest part of the derivative coupling in the
vicinity of a conical intersection.5 In the analysis it is convenient
to replace the Jacobi coordinates with canonical coordinates,
F, θ, z, defined as follows. In theg-h(Rx) plane, defined by
the vectorsgIJ(Rx) andhIJ(Rx), define polar coordinatesF, θ
by x ) F cosθ, y ) F sin θ, wherex[y] is the displacement
along x̂ ≡ ĥIJ(Rx)[ŷ ≡ ĝIJ(Rx)⊥], a unit vector in nuclear
coordinate space parallel [perpendicular] tohIJ(Rx). Also letz
represent a displacement along the unique axis perpendicular
to theg-h(Rx) plane.
To first order in displacements fromRx, EI(R) andEJ(R) [for

I ) -, J ) +, andR) (F,θ,z)] are given by

where

and

Here and subsequently the superscript p indicates the use of

Figure 1. Unit vectors in the directionshIJ(Rx(2.6)) andgIJ(Rx(2.6))⊥

[the component ofgIJ(Rx(2.6)) in theg-h plane perpendicular tohIJ-
(Rx(2.6))], represented in terms of atomic displacements. Also displayed
are the Jacobi coordinates,R, r, γ.

TABLE 1: Points of Conical Intersection for AlH 2

R (a0) r (a0)
γ (deg)

E (eV) h (au) g (au)b s (au)b

C2V
1 2.522 2.6 1.830 0.0523 0.0503-0.0364

90.0 0.0155 -0.0050
-0.0965

2 2.647 2.8 1.492
90.0

3 2.759 3.0 1.338
90.0

4 2.954 3.4 1.323
90.0

5 3.193 4.0 1.623
90.0

6 3.335 4.4 1.910
90.0

Cs
c

7 2.812 3.1 1.307 0.0601 0.0261 0.0193
89.3 0.0025 0.0066

-0.0062
8 2.895 3.3 1.426 0.0076 -0.0173 -0.0131

77.5 0.0584 0.0155
-0.0238

9 2.859 3.4 2.651
58.7

10 2.828 3.493 4.593
49.41

a E) E12A′ ≈ E22A′ relative toE12A′[Al+H2] ) -243.096 687 23 au.
b Presented in the orderx, y, z. c By symmetry these points occur in
pairs forγ (denotedRxn) and 180° - γ (denotedRxn′).

gw ) (1/2)gIJ(Rx)‚ŵ w) x, y (7a)

h) hIJ(Rx)‚x̂ (7b)

sw ) sIJ(Rx)‚ŵ w) x, y, z (7c)

[H(R) - EI(R)]c
I(R) ) 0 (3)

gIτ(R) ) cI(Rx)
†∂H(R)
∂τ

cI(Rx) (4a)

hIJτ(R) ) cI(Rx)
†∂H(R)
∂τ

cJ(Rx) (4b)

gIJ(R) ) gJ(R) - gI(R) (4c)

sIJ(R) )[gI(R) + gJ(R)]/2 (4d)

E((F,θ,z) = E(
p (F,θ,z) ≡ ε((F,θ,) + H(F,θ,z;s) ≡ ε((F,θ) +

sxx+ syy+ szz (5)

ε((F,θ) ) (Fq(θ) (6a)

q(θ)2 ) h2 cos2 θ + (gx cosθ + gy sinθ)2≡
h2 cos2 θ + g2 sin2(θ + R) (6b)
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perturbation theory. It can also be shown that5

Below it will be convenient to denote asC(O,F) circular paths
in theg-h plane with originO and radiusF. Also w[C] will
denote the set of values of a functionw(R) onC andmax-w[C]
will denote the maximum of that set of values.
As noted in the Introduction,Rx cannot be a true transition

state. This can be seen from eqs 5 and 6. From these equations
we have thatEI(R) is the sum of two “linear” terms:H(F,θ,z)
(usually nonvanishing) and a strictly negative contributionFq(θ).
Thus, forO ) Rx and F small, EI[C(O,F)] cannot look as it
would if Owere a saddle point, in two dimensions. This point
is discussed further in section III (Figure 5).
C. The Adiabatic Correction near a Conical Intersection.

In addition to providing for interstate transitions the derivative
coupling, fJI(R), can effect the nuclear motion through the
adiabatic correction.10 The adiabatic correction is added to
EI(R) to produce an effective potential for nuclear motion:11

Here,f R
JI(R) ) (f XR

JI (R), f YR

JI (R), f ZR

JI (R)), andXR, YR, ZR are the
Cartesian coordinates of theRth nucleus with massMR.
f θ
JI(R) is key since asF f 0, f τ

JI(R) for τ ) F, z are uniformly
small while (1/F)f θ

JI(R) is singular. Thus the singular charac-
ter of (1/F)f θ

JI(R) causes the nuclear motion to avoid points of
conical intersection.

III. Results and Discussion

Table 1 presents points on the 12A′-22A′ seam of conical
intersection. Forr < 3.1 a0 the seam has exclusivelyC2V
symmetry. The form of the seam is discussed in detail below.
From this table the MECP,Rmex, is predicted (based on a three-
point quadratic fit) to beRmex ) (2.87, 3.22, 90°) with
E12A′(Rmex) ) E22A′(Rmex) ) 1.29 eV (measured relative to Al
+ H2; see Table 1).Rmex represents the lowest point on the
C2V ridge separating Al(2P) + H2 from AlH2(X2A1) and gives
the “barrier” height for theC2V path from Al + H2 to AlH2-
(X2A1) starting on the2B2 potential energy surface. This
prediction forRmex is in good accord with a previous determi-
nation using a larger atomic orbital basis set,3 which gaveR)
2.853a0, r ) 3.175a0, γ ) 90°(assumed), andE12A′(Rmex) )
E22A′(Rmex) ) 1.17 eV. To put these energetics in perspective
in the context of channel 1b, note that the AlH(X1Σ+) + H
asymptote is computed (measured) to be endoergic relative to
Al + H2 by 1.53(1.59) eV and is therefore only 0.23 eV above
E12A′(Rmex). The predicted reaction endoergicity is in excellent
accord with the experimental value given parenthetically.4

A. The Seam of Conical Intersection for r e 3.1 a0.
Consider the local topology of theC2V ridge starting withRx1

≡ Rx(2.6) ) (2.522, 2.6, 90°). Figure 1 depictsĝIJ(2.6)⊥ ≡
ĝIJ(Rx(2.6))⊥ andĥIJ(2.6)≡ ĥIJ(Rx(2.6)). These two directions
are perpendicular to the ridge. From this figure it is seen that
thex-axis describes principallyR andr motion. Motion along
the positivex-axis is in the direction of the reactant (Al+ H2)
channel. They-axis, alongĝIJ(2.6)⊥, is largely theC2V breaking,
γ or antisymmetric stretch, motion and leads to the AlH+ H
channel. Thez-axis is tangent to the ridge (that is, tangent to
the seam of conical intersection) and is comprised of theR, r
motion orthogonal toĥIJ(2.6). Note that althoughRx(2.6) has
C2V symmetry, the vectorsgIJ(2.6) andhIJ(2.6) do not fully
reflect this symmetry. This illustrates the fact that at a point

f θ
JI(R) = f θ

p,JI(R) ≡ (1/2)
ghsin(R + π/2)

q2(θ)
(8)

Eh I(R) ) EI(R) + [∑
R)1

(2MR)
-1∑

K)1

NCSF

|fRKI(R)|2] (9)

Figure 2. (a) For F ) 0.1, E12A′[C(Rx(2.6), F)] (open circles),
E22A′[C(Rx(2.6), F)] (pluses), andfθ[C(Rx(2.6), F)] (open squares),
E12A′
p [C(Rx(2.6), F)] (closed circles), andfθ

p[C(Rx(2.6), F)] (filled
squares). Energies in eV relative toE12A′(Rx(2.6))) -243.029 438 6
au. (b) fτ[C(Rx(2.6), 0.1)] τ ) F (open diamonds),z (open circles),
R(filled circles), γ (filled squares). (c) Same as part a withF ) 0.5.
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of conical intersectioncI(Rx) andcJ(Rx) are only defined up to
a one-parameter rotation.5 Computationally, a small deviation
from exactC2V symmetry gives rise to eigenstates that are
mixtures of2A1 and2B2 wave functions. However theĝIJ(2.6)⊥

and ĥIJ(2.6) directions, in the uniquely determinedg-h(Rx)
plane, remain conceptually significant.
Figure 2a reportsEI[C(Rx(2.6), 0.1)], I ) 1,22A′ and

fθ[C(Rx(2.6), 0.1)] (theIJ superscript is suppressed here and
below) and compares them with the perturbation theory results,
E12A′
p [C(Rx(2.6), 0.1)] andf θ

p[C(Rx(2.6), 0.1)] from eqs 5 and
8. SinceRx(2.6) hasC2V symmetry, half the data in this figure
is symmetry redundant and the unique domain is indicated. The
unique domain does not correspond exactly to 0° e θ e 180°
since they-axis, for reasons explained above, does not cor-
respond to theγ direction. If it had,sy would be zero by
symmetry. See Table 1.
For this small value ofF, the perturbation theory results,

E12A′
p (R), f θ

p(R), which reflect exclusively the conical behavior,
are expected, and are seen, to be in qualitatively good agreement
with the MCSCF/CI results,E12A′(R), fθ(R) although important
and illuminating quantitative differences exist. Displacements
alongĥIJ(2.6) (θ ) 0°, 180°) are significantly downhill in energy
for both E12A′(R) and E12A′

p (R); that is, the fall off from the
ridge is steep. This may be verified by comparison with Figure
2c, which presents theF ) 0.5 results. The asymmetry for
positive and negative displacements alongĥIJ(2.6) (θ ) 0°, 180°)
reflects thesx contributions. For displacements alongĝIJ(2.6)⊥,
(θ ) -90°, 90°), also perpendicular to the ridge, the energy
changes less drastically; that is, in this direction the ridge is
comparatively flat.
E12A′(R), for F ) 0.1 andθ ) -90° or 90°, aregreaterthan

E12A′(Rx(2.6)). ThusE12A′[C(Rx(2.6), 0.1)], determined from the
MCSCF/CI treatment, resembles the energetics on a loop
surrounding a saddle point intwo dimensions. However for
the perturbation theory results forE12A′

p (R), for F ) 0.1 andθ
) -90° or 90°, arelessthanE12A′(Rx(2.6)). This demonstrates
that for smallerF E12A′[C(Rx(2.6), F)] would not resemble the

energetics of a two-dimensional saddle point; that is, as noted
above, a conical intersection cannot be a true saddle point. The
energetics in the third direction are discussed below.
Figure 2b reportsfτ[C(Rx(2.6), 0.1)], forτ ) F, z andγ, R.

In the canonical coordinate representationfτ[C(Rx(2.6), 0.1)],
for τ ) F, z, is uniformly small, while (1/F)fθ[C(Rx(2.6), 0.1)],
theonly singular component asF f 0, is strongly peaked atθ
) -90°, 90°. This peaking mirrors∆E ≡ E22A′ - E12A′ as
required by eqs 5 and 8, and can be viewed as a consequence
of the asymmetry parameters,g/handR. To see this, note that
eq 8 can be rewritten as

For exactC2V wave functionsR ) 0. Then ifg/h) 1, as in the
case ofC3V symmetry,12 f θ

p,JI(F,θ) ) 1/2 independent ofF, θ,
that is, no peaking.
In the Jacobi representation the situation is less intuitive. The

three derivative couplings,τ ) R, r, andγ, are large, except as
required by symmetry. See Figure 2b, where, for example,
fγ(F,∼90°) ≈ fR(F,∼180°) ) 0. Recall that∆E is minimized
nearθ ) 90°. Further, all three components are singular asF
f 0. Thus the Jacobi representation provides, in a sense, a
misleading picture of the nature of the singularity at a conical
intersection.
Figure 2c reportsEI[C(Rx(2.6), 0.5)],I ) 1,22A′, andfθ[C(Rx-

(2.6), 0.5)] and, for comparison,E12A′
p [C(Rx(2.6), 0.5)],

f θ
p[C(Rx(2.6), 0.5)]. For this largerF, E12A′ is considerably
different fromE12A′

p . The peaking offθ(F,θ) nearθ ) -90°,
90°, evinced in theF ) 0.1 results, remains evident in theF )
0.5 data, although in this caseE12A′ at θ ) -90°, 90° is much
larger thanE12A′(Rx(2.6)). Compare Figure 2, parts a and c.
Also note thatmax-E12A′[C(Rx(2.6), 0.5)] is much greater than
max-E12A′[C(Rx(2.6), 0.1)]. As discussed by Mead13 and
subsequently by Kupperman,14 when the total energy available
to a system exceeds the energy along a closed loop surrounding
a conical intersection, the geometric phase effect,15-18,11 may
alter the results of an adiabatic, that is, single potential energy
surface, nuclear dynamics calculation. Here only smallF loops
will be relevant in this regard.
We next turn to the region ofRx7 ≡ Rx(3.1), which is near

the MECP. Theg-h(r) planes, equivalently the tangents to
the seam directionẑ, are approximately parallel for the ranger
) 2.6-3.0. This is not required byC2V symmetry, which only
guarantees thatẑ is orthogonal to theγ-direction. Rx(3.1)
evinces a slight deviation fromC2V symmetry, which is also
reflected inẑ. This symmetry breaking, which is reflected in
ĝIJ(3.1)⊥ shown in Figure 3, is not an artifact of the calculation
but a harbinger of the intersecting seams of conical intersections
discussed in detail below. Note thatĥIJ(3.1) ≈ +ĥIJ(2.6),
whereasĝIJ(3.1)⊥ ≈ -ĝIJ(2.6)⊥. (Compare Figures 1 and 3).
The energetics and derivative couplings in the vicinity ofRx-

(3.1) and Rx(2.6) although qualitatively similar differ in
important ways. This is demonstrated in Figure 4a, which
reports EI[C(Rx(3.1), 0.1)], I ) 1,22A′, fθ[C(Rx(3.1), 0.1)]
together withE12A′

p [C(Rx(3.1), 0.1)],f θ
p[C(Rx(3.1), 0.1)], and in

Figure 4b, which reportsfτ[C(Rx(3.1), 0.1)], forτ ) F, z. Note
the increased asymmetry between theθ ≈ 270° andθ ≈ 90°
values of the energies and derivative couplings forRx(3.1), when
compared withRx(2.6). The asymmetry would be absent if
Rx(3.1) were a trueC2V structure. More significantly, although
fθ[C(Rx(r), 0.1)] is peaked nearθ ) 270° (and 90°) for both r
) 2.6 and 3.1, the peaking is much more extreme forr ) 3.1
thanr ) 2.6. This could be anticipated from the characteristic
parameters in Table 1. Thus nonadiabatic effects are expected

Figure 3. Unit vectors in the directionshIJ(Rx(3.1)) andgIJ(Rx(3.1))⊥

represented in terms of atomic displacements.

f θ
p,JI(F,θ) ) (1/2)

sin(R + π/2)

(h/g)cos2 θ + (g/h)sin2(θ + R)
(10)
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to be more pronounced nearθ ) -90°, 90°, which from Figure
3 correspond to displacements leading to AlH+ H, than forθ
) 0°, 180°, r, R displacements connecting the reactants and
the dihydride, channel 1a. The strongly peaked derivative
coupling results from mixing of CSFs with, qualitatively, AlH2
(X2A1) and AlH(X1Σ+) + H character.

ForRx(3.1)E12A′(F ) 0.1,θ ) 270°) is lower thanE12A′(Rx-
(3.1)), in contrast to the situation atRx(2.6) described above.
The good agreement betweenE12A′[C(Rx(3.1), 0.1)] and
E12A′
p [C(Rx(3.1), 0.1)] indicates that forF < 0.1 E12A′[C(Rx-

(3.1),F)] can be obtained from eq 5. This observation will be
used below to discuss the energetics in the vicinity ofRx(3.1).

Figure 4c,d reportsEI[C(Rx(3.1), F)], I ) 1,22A′, fθ[C(Rx-
(3.1), F)] for F ) 0.25 and 0.5, respectively. Note thatmax-
E12A′[C(Rx(r), 0.5)] - E12A′(Rx(r)) is appreciably smaller forr
) 3.1 thanr ) 2.6. Thus closed loops, that is, paths that exhibit
the geometric phase effect, will be energetically accessible at

larger distances fromRx(3.1) than was the case forRx(2.6).
Compare Figures 2c and 4d.
The points in Figure 4a (F ) 0.1) and 4c (F ) 0.25)

corresponding toθ ) 270° denotedRa≡ (2.8395, 3.1588, 87.5°)
andRc≡ (2.885, 3.25, 83°) are of particular interest. For these
points∆E becomes quite small and the corresponding derivative
couplings are very large. This suggests the existence of
additional points of conical intersection, which wouldnothave
C2V symmetry. This point is considered further below.
It was suggested in the Introduction thatRx(3.1), ap-

proximately the MECP, is near the saddle point for reaction
1a. This point is addressed in Figure 5, which reports the 250°
< θ < 285° portion ofE12A′[C(Rx, F)] for F ) 0.01, 0.05, 0.1,
and 0.25. TheF ) 0.01 and 0.05 results were obtained from
eq 5, that is without resorting to ab initio calculations. From
these data a saddle point is evident nearθ ) 270° and F )
0.05 a0. The reaction coordinate is approximately along the
x-axis (the direction parallel to dθ at θ ) 270°), which is the
approximateC2V mode in Figure 3, as expected. SinceF is

Figure 4. (a) ForF ) 0.1E12A′[C(Rx(3.1), F)] (open circles),E22A′[C(Rx(3.1), F)] (pluses), andfθ[C(Rx(3.1), F)] (open squares),Ep12A′[C(Rx(3.1),
F)] (closed circles), andfθ

p[C(Rx(3.1),F)] (filled squares). Energies in eV relative toE12A′(Rx(3.1))) -243.048 657 au. (b) fτ[C(Rx(3.1), 0.1)],τ )
F (open diamonds) andz (open circles). (c) Same as part a forF ) 0.25. (d) Same as part a forF ) 0.50.
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small, this region is quite close to the seam of conical
intersections so nonadiabatic effects are expected to be preemi-
nent. For this reason a more refined characterization of the
transition state was not undertaken.
B. The seam of Conical Intersection forr > 3.1a0. The

preceding discussion indicates that the region of the seam of
conical intersections nearRx(3.1) is quite complicated. As
illustrated by the data in Figure 4, the 1,22A′ surfaces remain
quite close for a range of nuclear configurations. Since theCs

points of conical intersection in Table 1 occur in pairs (for 0°
e γ e 180°) denotedRxi andRxi′, the data in that table indicate
a trifurcation of the seam of conical intersection asr increases
beyond 3.1a0. For exampleRx(3.4) ) {Rx4, Rx9, andRx9′}.
One branch continues forC2V geometries while two symmetry
equivalent branches exist withγ * 90°. See Figure 6. The
pointsRa ) (2.8395, 3.1588, 87.5°) andRc ) (2.885, 3.25,
83°) suggested above to be near points of conical intersection
are in fact quite close to the pointsRx7.25) (2.836, 3.1588, 85.8°)
andRx7.75) (2.874, 3.25, 80.5°) obtained by linear interpolation
from Rx7 andRx8, Table 1. Similar trifurcations have been
reported and analyzed in O319 and CH2.20

The occurrence of a trifurcation, two intersecting seams, rather
than a bifurcation, in which theC2V component of the seam
disappears, has an important consequence illustrated in Figure

6. In the case of the trifurcation both loop a and loop b surround
an odd number of conical intersection points (1 and 3,
respectively) so that the geometric phase effect, more correctly
the sign change in the electronic wave function, is obtained for
such loops on either side of the trifurcation. For a bifurcation
one would have the unappealing occurrence that the number of
conical intersections enclosed by the closed loops could change
suddenly from odd to even, as one progresses from loop a to
loop b, so that the sign change in the electronic wave function
would “disappear” abruptly, although the loops in question
would never include a singular point.
C. Conical Intersections vs Narrowly Avoided Crossings.

For r e 3.1 a0 the (C2V) seam of conical intersections was
determined usingCs symmetry wave functions and an analytic
gradient based algorithm discussed previously.21 For r > 3.1
a0 the C2V seam of conical intersection was found using
equivalent wave functions withC2V symmetry imposed. A
numerical search algorithm can never rigorously distinquish
between a point of conical intersection and a narrowly avoided
crossing. One could determine whether in fact the points listed
in Table 1 are points of conical intersections by considering
the phase of the electronic wave functions for closed pathsC
surrounding the point in question, as was done by Ruedenberg
in his seminal analysis of conical intersections in ozone.22,23

However this can be quite tedious. Instead, hereX(C), the
circulation offIJ for a small loopC around the point in question,
will be used to consider this question. As a consequence of eq
8, it can be shown5 that

whereκ(Cε) ) 0 if Cε, the infinitesimal loop, contains 0 points
of conical intersection andκ(Cε) ) π if Cε contains 1 point of
conical intersection. This approach has the advantage that the
phase of the integrand at the end point of the loop is known,
sincefIJ(R) does not change sign after traversing a closed loop.
This provides a useful control in assigning of the phase of the
integrand at neighboring points. The existence of three
independent components for the derivative coupling vector
fIJ(R) can also help to decide phase relationships in otherwise
ambiguous situations without the need to determine additional
points.
X(C) was determined for three representative loopsC1 ) (Rx8,

F ) 0.2);C2 ) (Rx5, F ) 0.1), andC3 ) (Rx5-0.1ŷ, F ) 0.05),
where from Table 1Rx8 ) (2.895, 3.3,77.5°) andRx5 ) (3.193,
4.0, 90°). C1 andC2 are suggested to contain a single point of
conical intersection, whereasC3 should contain no conical
intersection points. The quadrature required to evaluateX(C)
was performed on the basis of spline interpolation offθ[C(O,F)],
reported in Figure 7a forC1 and Figure 7b forC2 andC3. We
find X(C1) ) (0.99687586)π,X(C2) ) (0.99190496)π, andX(C3)
) (-0.00000538)π. X(C1) andX(C2) confirm thatC1 andC2

in fact contain a point (actually an odd number of points) of
conical intersection. X(C3) confirms that C3 contains no
(actually an even number of) conical intersections. The
deviations ofX(C) from theF ) 0 limit are expected since the
derivative coupling is in general known to have a nonremovable
part, a part with a nonvanishing curl.24,25 Figure 7b illustrates
the differences infθ[C(O,F)] that lead toX(C2) ≈ π andX(C3)
≈ 0.
D. Implications for Nuclear Dynamics. As the saddle point

for channel 1a lies nearRx(3.1), this region will play an
important role in the dynamics of reaction 1. Excited vibrational
levels of AlH2(X2A1), AlH2(X2A1, V* ), are resonances that are
likely to sample this region of nuclear coordinate space during
their decay. Thus a combination of experimental and theoretical

Figure 5. E12A′[C(Rx(3.1),F)] for F ) 0.01, 0.05, 0.1, 0.25, suggesting
the existence of a saddle point nearθ ) 270°. Energies in eV relative
to E12A′(Rx(3.1))) -243.048 657 au.

Figure 6. Closed loops around two seams of conical intersection. In
the case of the trifurcation both loops a and b surround an odd number
of conical intersections. For the bifurcation, loop a contains one conical
intesection point while loop b contains two such points. Thus for the
bifurcation the number of conical intersections enclosed by the closed
loops can change suddenly from odd to even without encountering a
singularity as one progresses from loop a to loop b. The arrows on the
seam lines indicate that these lines do not terminate abruptly.

X(C) ) Icf
IJ(R)‚dR )∫02π

fθ dθ98
Ff0

κ(Cε) (11)
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studies of the decay of these resonances would shed important
light on the nonadiabatic dynamics. It will, for example, be
interesting to see how the markedθ dependence of the derivative
couplings evident in Figure 4a,b,d is reflected in the propensity
for nonadiabatic dynamics in general and nonadiabatic recross-
ing in particular.

IV. Summary and Conclusions

The role of conical intersections in the ground-state reactions
Al(2P)+H2 f AlH2(X2A1) or AlH(X1Σ+) + H has been
considered. The energies and derivative couplings were com-
puted in the vicinity of the seam of conical intersections. It
was argued that wave packets describing the decomposition of

AlH2(X2A1, V* ), excited vibrational levels of AlH2(X2A1), are
likely to pass quite close to the minimum energy point on the
seam of conical intersections. Nonadiabatic recrossing could
serve to increase the observed lifetime of these resonances.
Consequently the decay of these resonances provides a valuable
laboratory for the study of nonadiabatic effects.
It will also be interesting to compare the conical intersections

in AlH2 with those in BH2. The BH2 van der Waals complex
has been the object of previous theoretical26,27and experimen-
tal28 studies. It has been suggested that the electronically excited
B(2s2p2 2D)-H2 van der Waals complex may decay radiation-
lessly to BH(X1Σ+).28

The seam of conical intersections is shown to exhibit an
unusual trifurcation. An exclusivelyC2V region of the seam of
conical intersection divides into a branch that preservesC2V
symmetry and two symmetry equivalent branches that have only
Cs symmetry. Equivalently two seams of conical intersection,
one with exclusivelyC2V symmetry, intersect. The existence
of conical intersections was demonstrated by analyzing the line
integral of the derivative couplings along closed loops sur-
rounding the point of conical intersection.
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Figure 7. fθ[C(O,F)]: (a) C1 ≡ (Rx8, F ) 0.2); (b)C2 (Rx5, F ) 0.1);
andC (Rx5-0.1ŷ, F ) 0.05). In part afr[C(O,F)] is also presented.Rx8

) (2.895, 3.3,77.5°) andRx5 ) (3.193, 4.0, 90°). Note thatfθ has a
constant sign forC1 andC2, while fθ changes sign forC3. This accounts
for the different values ofX(C) discussed in the text. The range of the
ordinates is chosen to emphasize this point.
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