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The Reactions AIEP) + H, — AIH »(1%A", 2°A') — AIH »(X?A;) or AIH(X 1X*) + H: Unusual
Conical Intersections and Possible Nonadiabatic Recrossing
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The energies and derivative couplings are computed in the vicinity of #A&-2?A’' seam of conical
intersections for AlH. It is shown that the reaction path for the decomposition of excited vibrational levels

of AlH»(X?A1) to Al + H, passes quite close to the minimum energy crossing point (MECP), the minimum
energy point on the seam of conical intersections. Near the MECP the seam of conical intersections exhibits
an unusual trifurcation with @,, portion dividing into a branch that presern@s symmetry and two symmetry
equivalent branches that have oy symmetry.

I. Introduction as discussed in section Il a conical intersection point cannot be
the true transition state, so that the true reaction path must
involve Cs structures, avoiding points of conical intersection.
For Cs structures théA; and?B, states become the’A' and

Characterization of the transition state for a chemical reaction
is frequently key to understanding the reaction mechanism and

rmining the r ion rate. However, when the transition - . .
dete g the reaction rate. However, when the transitio 227" states. Preliminary calculations suggest that at the transi-

state is located in the vicinity of a conical intersection, the L
. tion state deviations fronC,, symmetry are smafl. Thus
reaction rate may be affected by a phenomenon referred to as

ronadiabati. recossig. n whih branching t0 an upper, 10701 ec10seg ey et e e of e fome
nonreactive, surface reduces the observed reaction rate on th ! Y

; . p p
ground-state potential energy surface. In this situation it is evel_s, resonance_s, of the d'hyd”d_e’ AXEA, U_)' o
essential to characterize the relevant conical intersections and | MiS Work considers the mechanism of reaction 1, providing
an analysis of the region of the!A’'—22A' seam of conical

intersection. This analysis will guide the construction of the
potential energy surfaces and surfaces of derivative couplings
for this reaction, which will be the subject of a future
publication. It will emerge that in the vicinity of the MECP
the apparently straightforward symmetry-allowed seam of
conical intersection becomes unexpectedly difficult to character-
ize. This difficulty is found to reflect the existence of a

determine the interstate derivative couplings)'(R) =

Wy(r;R)|(8/37)W)(r;R)L} that are responsible for the nonadia-

batic effects. Here is one of the nuclear coordinat& and

W\ (r;R) is the adiabatic electronic state with eneigyR).
Nonadiabatic recrossing may be important in the reactions

of ground-state ARP) with molecular hydrogen.

A'(ZP)+ H,— AIH2(12A1, 1252) — AlH 2(X2A1) (1a) trifurcation of the seam of intersection, equivalently, the
intersection of two distinct seams of conical intersection. This
—AHX'Z)+H (1b) unusual topology will result in complicated nonadiabatic nuclear

dynamics.

These reactions are of considerable practical importance, being Section Il recapitulates the techniques, described in detail
relevant to the use of Al-doped cryogenic hydrogen as an previously® used to characterize this seam of conical intersec-
energetic material. The formation of the dihydride A(K?A.), tion. Also described in that section is the electronic structure
channel 1a, could limit the stability of the van der Waals treatment of AlH. Section Ill presents the results of the
complex Ak-H that constitutes the energetic material, while calculations and the implications for reaction 1. Section IV
channel 1b may be involved in the combustion of the energetic summarizes and discusses directions for subsequent investiga-
material. Channel 1a, dihydride formation, is exoergic-y7 tions.

kcal/mol (ref 3), while the chemical reaction, channel 1b, is

endoergic The PA; potential energy surface has a high barrier,

~76 kcal/mol, to the formation of the 24, dihydride® Low- Il. Theoretical Approach

energy pathways to the dihydride involve tAB, potential
energy surface. I€,, symmetry, pathways originating on the
2B, potential energy surface access the dihydride via a sym-
metry-allowed?2B,—2A; conical intersection. For these con-
strained pathways, the minimum energy crossing point (MECP)
the minimum energy point on ti#8,—2A; conical intersection
seam, represents the “transition state” for the reaction. However

The electronic structure calculations employ multiconfigu-
rational self-consistent-field (MCSCHonfiguration interaction
(CI)” wave functions. Inthe MCSCF/CI approach the adiabatic
' electronic stateW,(r;R), is expanded in a configuration state
function (CSFJ basis:

NCSF
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so that thec'(R) satisfy

[HR) — E(R)C'(R) =0 €)
where the molecular orbitals used to build tig(r;R) are
obtained from a state-averaged MCSCF proceéure.
Molecular geometries will be specified by the Jacobi coor-
dinatesR = (Rr,y) wherer is the H—H? distanceR is the
distance between Al and the center of mass gfatdy is the
angle between the line segments correspondifjeodr, such
thaty = 90° for C,, geometries. See Figure 1. Poirf&, on
the seam of conical intersections will be parametrized, llgat
is R«(r) = [R(n), r, y(r)]. It will emerge that as the result of
the trifurcation of the seam of conical intersecti®(r) is not
a single-valued function af. It will therefore be convenient
to also denote points of conical intersectionRy, wherej is
a number, usually defined in Table 1. As a consequence of the
trifurcation, we shall encounter the situatiB(r) = { Ryj,, Ry,
Rya} -
A. AlIH, Wave Functions. The calculations employ Al

(10s7p3d) and H (6s3p1d) contracted Gaussian basis sets. The

W \(r;R) are described at the second-order Cl [ébelsed on a
five-electron, six-orbital (5ald') active space, comprising the
Al(3s,3p) orbitals and the H(1s) orbitals and resulting in 264 775
CSFs.

B. Characterization of a Conical Intersection. In the
vicinity of an Ry the wave functions, and hence the energies
and derivative couplings, for theA’ and ZA’ states (denoted
I and J) can be described in terms of a set of characteristic
parameter8,gv(Ry), hV(Ry) ands?(Ry):

0.R) = dR) IR, (42)
h° (R) = (RX)TaH(R) (R (4b)
’(R)=d'R) - d'(R) (4c)
'(R) =[d'(R) + g’(R))/2 (4d)

These parameters, which can be readily determined using
analytic gradient techniquésgenable determination of the
energies and the largest part of the derivative coupling in the
vicinity of a conical intersectioP. In the analysis it is convenient

to replace the Jacobi coordinates with canonical coordinates,
o, 0, z, defined as follows. In thg—h(R,) plane, defined by
the vectorsg?(R,) and hY(R,), define polar coordinates, 6

by x = p cos 6, y = p sin 0, wherex[y] is the displacement
along & = AYRY[Y = §¥RY], a unit vector in nuclear
coordinate space parallel [perpendicularht{Ry). Also letz

represent a displacement along the unique axis perpendicular 10

to theg—h(Ry) plane.
To first order in displacements froRy, E;(R) andE;(R) [for

| = —,J=+, andR= (p,0,2)] are given by

E.(0,0,2 =EL(p,0,2) = e.(p,0,) + H(p,0,Z9) = €.(0,0) +
sx+sy+sz (5)

where

€.(p.0) = +pq(6) (6a)

q(0)* = h? cos 6 + (g, cosO + g, sin B) =
h? cog 6 + ¢ sirf(6 + o) (6b)
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Al

H!

r=2.6

Figure 1. Unit vectors in the directions"(R«(2.6)) andg”(R«(2.6))’

[the component ofV(R(2.6)) in theg—h plane perpendicular tb"-
(Rx(2.6))], represented in terms of atomic displacements. Also displayed
are the Jacobi coordinateR, r, y.

TABLE 1: Points of Conical Intersection for AlH ,

R(@) r(a) E(eV) h(au) g(aup  s(aup
v (deg)
CZI/
1 2522 26 1.830 0.0523 0.0503—-0.0364
90.0 0.0155 —0.0050
—0.0965
2 2647 28 1.492
90.0
2759 3.0 1.338
90.0
4 2954 34 1.323
90.0
5 3193 40 1.623
90.0
6 333 44 1.910
90.0
Cs
7 2812 3.1 1.307  0.0601 0.0261 0.0193
89.3 0.0025 0.0066
—0.0062
8 2895 33 1426 0.0076 —0.0173 —0.0131
77.5 0.0584 0.0155
—0.0238
9 2859 34 2.651
58.7
2.828 3.493 4.593
49.41

aE = Eg2ar & Ex2a relative toEza [Al +Hy] = —243.096 687 23 au.
b Presented in the ordeg y, z By symmetry these points occur in
pairs fory (denotedRy,) and 180 — v (denotedRyy).

and
g, = (123" (R)W W=X,y (7a)
h=h"(R)-% (7b)

Sv=S"(R)W W=XY,2 (7¢)

Here and subsequently the superscript p indicates the use of



Unusual Conical Intersections
perturbation theory. It can also be shown that

FIR) = 1(R) = () SN0 T2)

q(6)

Below it will be convenient to denote &O,p) circular paths
in the g—h plane with originO and radiuse. Also w[C] will
denote the set of values of a functimR) on C andmax-wC]
will denote the maximum of that set of values.

As noted in the IntroductiorRx cannot be a true transition
state. This can be seen from eqs 5 and 6. From these equations
we have thag(R) is the sum of two “linear” termsH(p,6,2)
(usually nonvanishing) and a strictly negative contribupq(®).
Thus, forO = Ry and p small, Ej[C(O,p)] cannot look as it
would if O were a saddle point, in two dimensions. This point
is discussed further in section Il (Figure 5).

C. The Adiabatic Correction near a Conical Intersection.

In addition to providing for interstate transitions the derivative
coupling, f(R), can effect the nuclear motion through the
adiabatic correctio®? The adiabatic correction is added to
Ei(R) to produce an effective potential for nuclear motién:

NCSF

E(R) =E(R) + [Z\(ZMQ)_lyZ\ fE(RIT (9)

Here,f J(R) = (fy (R), {3 (R), f7 (R)), andXa, Yo, Zy are the
Cartesian coordinates of thetﬁ nucleus with masd,.
f7'(R) is key since ap — 0, f'(R) for 7 = p, z are uniformly
small while (lb)f '(R) is smgular Thus the singular charac-
ter of (1/,o)f '(R) causes the nuclear motion to avoid points of
conical intersection.

Ill. Results and Discussion

Table 1 presents points on théAl—22A’' seam of conical
intersection. For < 3.1 agp the seam has exclusivel§,,
symmetry. The form of the seam is discussed in detail below.
From this table the MECRR ey is predicted (based on a three-
point quadratic fit) to beRmex = (2.87, 3.22, 90) with
E12a(Rmex) = Ex2a(Rmey) = 1.29 eV (measured relative to Al
+ Hy; see Table 1).Rmex represents the lowest point on the
C,, ridge separating A¥P) + H, from AIH,(X?A;) and gives
the “barrier” height for theC,, path from Al+ H, to AlH,-
(X2A,) starting on the?B, potential energy surface. This
prediction forRmex is in good accord with a previous determi-
nation using a larger atomic orbital basis %ethich gaveR =
2.853ay, r = 3.175ay, y = 90°(assumed), an&;2a(Rmey) =
Exa(Rmey = 1.17 eV. To put these energetics in perspective
in the context of channel 1b, note that the AIHEX) + H
asymptote is computed (measured) to be endoergic relative to
Al + H; by 1.53(1.59) eV and is therefore only 0.23 eV above
Eiza(Rmey. The predicted reaction endoergicity is in excellent
accord with the experimental value given parenthetically.

A. The Seam of Conical Intersection forr < 3.1 ag.
Consider the local topology of th@,, ridge starting withRy;
= R«(2.6) = (2.522, 2.6, 90). Figure 1 depictg’(2.6Y =
0Y(Rx(2.6)) andh¥(2.6) = hY(R4(2.6)). These two directions
are perpendicular to the ridge. From this figure it is seen that
the x-axis describes principalliR andr motion. Motion along
the positivex-axis is in the direction of the reactant (Al Hy)
channel. Theg-axis, alonggM(2.6Y, is largely theC,, breaking,

y or antisymmetric stretch, motion and leads to the AtHH
channel. Thez-axis is tangent to the ridge (that is, tangent to

2.5

-90

3.5
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Figure 2.
Ex2a[C(R«(2.6), p)] (pluses), andfs[C(Rx(2.6), p)] (open squares),

@

45
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For p = 0.1, E;2a[C(R«(2.6), p)] (open circles),

the seam of conical Jntersectlon) and is comprised ofRhe EP,.[C(R(2.6), p)] (closed circles), and?[C(R.(2.6), p)] (filled

motion orthogonal tM(2.6). Note that althougRx(2.6) has  squares). Energies in eV relative E2a(R«(2.6)) = —243.029 438 6
Co, symmetry, the vectorg’(2.6) andhM(2.6) do not fully au. (b) f{[C(R«(2.6), 0.1)]t = p (open diamonds)z (open circles),
reflect this symmetry. This illustrates the fact that at a point R(filled circles) y (filled squares). (c) Same as part a with= 0.5.
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energetics of a two-dimensional saddle point; that is, as noted
above, a conical intersection cannot be a true saddle point. The
energetics in the third direction are discussed below.

Figure 2b reports$,[C(Rx(2.6), 0.1)], fort = p, zandy, R
In the canonical coordinate representatfdiC(Rx(2.6), 0.1)],
for T = p, z, is uniformly small, while (18)fo[ C(Rx(2.6), 0.1)],
the only singular component gs— 0, is strongly peaked &t
= —90°, 90¢°. This peaking mirrorsAE = Ex2a- — Ej2ar as
required by egs 5 and 8, and can be viewed as a consequence
of the asymmetry parameteggh anda. To see this, note that
eq 8 can be rewritten as

ol _ \ sin(a + 77/2)
- P 0 0) = 02y o2 0+ (g)Sif(® + o)

(10)

For exactC,, wave functionsx = 0. Then ifg/h=1, asin the
Al case ofCs, symmetry'? f 7¥(p,0) = 1/2 independent o, 6,
that is, no peaking.

In the Jacobi representation the situation is less intuitive. The
three derivative couplings,= R, r, andy, are large, except as
required by symmetry. See Figure 2b, where, for example,
f,(0,~90°) ~ fr(p,~18C°) = 0. Recall thatAE is minimized
near® = 90°. Further, all three components are singulapas

H2 — 0. Thus the Jacobi representation provides, in a sense, a
misleading picture of the nature of the singularity at a conical
intersection.
Figure 3. Unit vectors in the directionBV(Ry(3.1)) andg”(R«(3.1))" Figure 2c report&,[C(Rx(2.6), 0.5)],| = 1,2A/, andfy[C(Ry«-
represented in terms of atomic displacements. (2.6), 0.5)] and, for comparisonEd,,[C(R«(2.6), 0.5)],

o . i fP[C(Rx(2.6), 0.5)]. For this largep, Ejs2a' is considerably
of conical mtersectlorml(Rx) anch(FQ) are only defined up to different from E%,,.. The peaking ofy(p,0) near® = —90°,
a one-parameter rotatién Computationally, a small deviation 9C°, evinced in thep = 0.1 results, remains evident in the=
from exactC, symmetry gives rise to eigenstates that are g data, although in this cag&za at = —90°, 9C° is much
mixtures of2A; and?B, wave functions. However thigl(2.6) larger thanExza(R«(2.6)). Compare Figure 2, parts a and c.

and h(2.6) directions, in the uniquely determingg-h(R,) Also note thatmax-B2a[C(R«(2.6), 0.5)] is much greater than
plar_le, remain conceptually significant. max-B24[C(R«(2.6), 0.1)]. As discussed by Me¥dand
Figure 2a reportsE[C(R(2.6), 0.1)], | = 1,2A’ and subsequently by Kuppermafwhen the total energy available
fo[ C(Rx(2.6), 0.1)] (thelJ superscript is suppressed here and 4 5 system exceeds the energy along a closed loop surrounding
below) and compares them with the perturbation theory results, 5 <onical intersection, the geometric phase effedg11 may
En[C(R(2.6), 0.1)] andf J[C(R(2.6), 0.1)] from eqgs 5 and  gajter the results of an adiabatic, that is, single potential energy
8. SinceR,(2.6) hasC;, symmetry, half the data in this figure  syrface, nuclear dynamics calculation. Here only smidbps
is symmetry redundant and the unique domain is indicated. The || be relevant in this regard.
unique domain does not correspond exactly 1a<00 < 180C° We next turn to the region d,; = Ry(3.1), which is near
since they-axis, fo_r reasons explained above, does not cor- the MECP. Theg—h(r) planes, equivalently the tangents to
respond to they direction. If it had,s, would be zero by the seam directiof, are approximately parallel for the range
symmetry. See Table 1. = 2.6-3.0. This is not required bg,, symmetry, which only
For this small value of, the perturbation theory results, guarantees that is orthogonal to they-direction. Ry(3.1)
ER.A(R), fB(R), which reflect exclusively the conical behavior, evinces a slight deviation fror,, symmetry, which is also
are expected, and are seen, to be in qualitatively good agreementeflected in2. This symmetry breaking, which is reflected in
with the MCSCF/CI results24(R), fo(R) although important  §9(3.1)” shown in Figure 3, is not an artifact of the calculation
and illuminating quantitative differences exist. Displacements but a harbinger of the intersecting seams of conical intersections
alongh¥(2.6) @ = 0°, 18C) are significantly downhill in energy  discussed in detail below. Note that(3.1) ~ +hY(2.6),
for both E24(R) and ED,,(R); that is, the fall off from the whereasjV(3.1F ~ —gY(2.6)". (Compare Figures 1 and 3).
ridge is steep. This may be verified by comparison with Figure  The energetics and derivative couplings in the vicinityRef
2c, which presents the = 0.5 results. The asymmetry for  (3.1) and R«(2.6) although qualitatively similar differ in
positive and negative displacements albH{R.6) @ = 0°, 180°) important ways. This is demonstrated in Figure 4a, which
reflects thes, contributions. For displacements alogié(2.6)”, reports E[[C(Rx(3.1), 0.1)],1 = 1,2A’, f)[C(Rx(3.1), 0.1)]
(0 = —90°, 9C°), also perpendicular to the ridge, the energy together withEf,, [C(R«(3.1), 0.1)],f J[C(R«(3.1), 0.1)], and in
changes less drastically; that is, in this direction the ridge is Figure 4b, which report§[C(Rx(3.1), 0.1)], forr = p, z Note
comparatively flat. the increased asymmetry between the: 270° and 6§ ~ 90°
E2a(R), for p = 0.1 andd = —90° or 9C°, aregreaterthan values of the energies and derivative couplingsRgB.1), when
Ex2a(R4(2.6)). ThusE2a[C(Rx(2.6), 0.1)], determined fromthe  compared withR,(2.6). The asymmetry would be absent if
MCSCF/CI treatment, resembles the energetics on a loop R(3.1) were a trué,, structure. More significantly, although
surrounding a saddle point ifwo dimensions. However for  f)[C(R(r), 0.1)] is peaked neat = 270 (and 90) for bothr
the perturbation theory results f&f,,.(R), for p = 0.1 andd = 2.6 and 3.1, the peaking is much more extremerfer 3.1
= —9(° or 90, arelessthanE;2a(Rx(2.6)). This demonstrates thanr = 2.6. This could be anticipated from the characteristic
that for smallerp E;2a[C(Rx(2.6), p)] would not resemble the  parameters in Table 1. Thus nonadiabatic effects are expected

y=9
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Figure 4. (a) Forp = 0.1 Ex2a[C(R«(3.1), p)] (open circles) Ex2a[C(R«(3.1), p)] (pluses), ands[C(R«(3.1), p)] (open squareskPiza[C(Rx(3.1),
p)] (closed circles), and)[C(R«(3.1), p)] (filled squares). Energies in eV relative E2a (Ry(3.1)) = —243.048 657 au. (b)fC(R«(3.1), 0.1)],z =
p (open diamonds) and (open circles). (c) Same as part a for= 0.25. (d) Same as part a for= 0.50.

B . . larger distances fronRy(3.1) than was the case f&ty(2.6).
to be more pronounced ne@r= —90°, 90°, which from Figure Compare Figures 2¢ and 4d.

C’lcoorrespond to dl_splacements leading t_o A, than for@ The points in Figure 4ap(= 0.1) and 4c § = 0.25)

= 0°, 180, r, R displacements connecting the reactants and ., oqnonding té = 27¢° denotecRa = (2.8395, 3.1588, 87%

the d,'hyd"de' channell 1a. The strongly pegke_d derivative andR. = (2.885, 3.25, 83 are of particular interest. For these

co;lplmg results fr;)n: mixing of CSFs with, qualitatively, dH  ,ints AE becomes quite small and the corresponding derivative

(X*A1) and AIH(X'ZY) + H character. couplings are very large. This suggests the existence of
For Ry(3.1) Eza(p = 0.1,0 = 27C) is lower thanEsza:(Ry- additional points of conical intersection, which wouldt have

(3.1)), in contrast to the situation &(2.6) described above. ~ Cz, Symmetry. This point is considered further below.

The good agreement betweeB;?a[C(Rx(3.1), 0.1)] and It was suggested in the Introduction th&(3.1), ap-

EP,.[C(R«(3.1), 0.1)] indicates that fop < 0.1 Exa[C(R proximgtely.thg MECP, is n.ear.the saddlq point for reaction

(3.1), )] can be obtained from eq 5. This observation will be la. This pointis addressed in Figure 5, which reports thé 250

used below to discuss the energetics in the vicinitRg3.1). = 0 =< 285 portion of Exa[C(Ry, p)] for p = 0.01, 0.05, 0.1,
and 0.25. The = 0.01 and 0.05 results were obtained from
Figure 4c,d report&[C(Ry(3.1), p)], | = 1,2A", fy[C(R«

eq 5, that is without resorting to ab initio calculations. From
(3.1), p)] for p = 0.25 and 0.5, respectively. Note thagx- these data a saddle point is evident néar 27¢° andp =
Erza[C(R«(r), 0.5)] — Ex2a(R«(r)) is appreciably smaller for 0.05a,. The reaction coordinate is approximately along the
= 3.1thanr = 2.6. Thus closed loops, that is, paths that exhibit x-axis (the direction parallel to@at & = 27C), which is the

the geometric phase effect, will be energetically accessible atapproximateC,, mode in Figure 3, as expected. Sineds



7958 J. Phys. Chem. A, Vol. 101, No. 43, 1997 Chaban et al.

0.10 L ARmms mmms 6. Inthe case of the trifurcation both loop a and loop b surround
1 an odd number of conical intersection points (1 and 3,

r=3.1 respectively) so that the geometric phase effect, more correctly

— & -p=0.01 1 the sign change in the electronic wave function, is obtained for

| —s—p=0.05 ; . . X . . :

0.05 L |~ -p=0.1 oo, ] such loops on either side of the trifurcation. For a bifurcation
Tl | --e--p=0.25 i’ o] one would have the unappealing occurrence that the number of
L7 N conical intersections enclosed by the closed loops could change
A ' suddenly from odd to even, as one progresses from loop a to

N s loop b, so that the sign change in the electronic wave function

would “disappear” abruptly, although the loops in question
would never include a singular point.

C. Conical Intersections vs Narrowly Avoided Crossings.
Forr =< 3.1 a the (Cyz) seam of conical intersections was
determined usin@s symmetry wave functions and an analytic
gradient based algorithm discussed previodslyzorr > 3.1
ap the C,, seam of conical intersection was found using
] equivalent wave functions witlC,, symmetry imposed. A
[ . | numerical search algorithm can never rigorously distinquish
oo b between a point of conical intersection and a narrowly avoided
250 255 260 265 270 275 280 285 _crossing. One cogld determir_1e w_hether in_fact the point_s Iis_ted

o(deg) in Table 1 are points of (_:onlcal intersections by considering
the phase of the electronic wave functions for closed p@ths

Figure 5. Ex2a[C(R«(3.1),p)] for p=10.01, 0.05, 0.1, 0.25, suggesting  syrrounding the point in question, as was done by Ruedenberg
EgeE‘in(sée?;i)‘))f:afgig'%fg'gé;‘ﬁ‘: 270°. Energies in eV relative  jy his seminal analysis of conical intersections in 0z&8.

PATAS ' ' However this can be quite tedious. Instead, h¥(€), the
circulation offV for a small loopC around the point in question,
will be used to consider this question. As a consequence of eq
8, it can be shownthat

0.00

E(eV)

-0.05

X(©) = $°(R)-dR = [*'F, do —(C) (D)

loop a

wherex(C,) = 0 if C,, the infinitesimal loop, contains 0 points
of conical intersection and(C,) = x if C. contains 1 point of
conical intersection. This approach has the advantage that the

. L . phase of the integrand at the end point of the loop is known,
Figure 6. Closed loops around two seams of conical intersection. In . 13 . .
the case of the trifurcation both loops a and b surround an odd numbers'n,cef (R,) does not change sign afte.r tr{:lversmg a closed loop.
of conical intersections. For the bifurcation, loop a contains one conical | Nis provides a useful control in assigning of the phase of the
intesection point while loop b contains two such points. Thus for the integrand at neighboring points. The existence of three
bifurcation the number of conical intersections enclosed by the closed independent components for the derivative coupling vector
loops can change suddenly from odd to even without encountering afJ(R) can also help to decide phase relationships in otherwise
singularity as one progresses from loop a to loop b. The arrows on the 3 mpiguous situations without the need to determine additional
seam lines indicate that these lines do not terminate abruptly. points.
small, this region is quite close to the seam of conical X(C)was determined for three representative l00ps- (R,
intersections so nonadiabatic effects are expected to be preemip = 0.2);C; = (Rys, o = 0.1), andCz = (Rs—0.1;, p = 0.05),
nent. For this reason a more refined characterization of the where from Table Ryg = (2.895, 3.3,77.9 andRys = (3.193,
transition state was not undertaken. 4.0, 90). C; andC,; are suggested to contain a single point of

B. The seam of Conical Intersection for > 3.1a,. The conical intersection, whereaS; should contain no conical

preceding discussion indicates that the region of the seam ofintersection points. The quadrature required to evalXé®)
conical intersections nedR«(3.1) is quite complicated. As  was performed on the basis of spline interpolatiofyldZ(O,p)],
illustrated by the data in Figure 4, the A2 surfaces remain reported in Figure 7a fo€; and Figure 7b folC, andCs. We
quite close for a range of nuclear configurations. SinceGhe  find X(Cy) = (0.99687586}, X(Cy) = (0.99190496y), andX(Cs)
points of conical intersection in Table 1 occur in pairs (for 0 = (—0.00000538}. X(Ci) andX(Cy) confirm thatC; andC;
< y < 180) denotedR,; andRy;, the data in that table indicate  in fact contain a point (actually an odd number of points) of
a trifurcation of the seam of conical intersectionrascreases conical intersection. X(C3) confirms that Cz contains no
beyond 3.1a;. For exampleRy(3.4) = { Ry, Rxo, andRyo}. (actually an even number of) conical intersections. The
One branch continues f@,, geometries while two symmetry  deviations ofX(C) from thep = 0 limit are expected since the
equivalent branches exist with = 90°. See Figure 6. The  derivative coupling is in general known to have a nonremovable
points R, = (2.8395, 3.1588, 87°% and R = (2.885, 3.25, part, a part with a nonvanishing cdft?5 Figure 7b illustrates
83°) suggested above to be near points of conical intersectionthe differences irig[ C(O,p)] that lead toX(Cy) ~ 7 and X(Cs)
are in fact quite close to the poirf&; .= (2.836, 3.1588, 853 ~ 0.

andRy;.75= (2.874, 3.25, 80.9 obtained by linear interpolation D. Implications for Nuclear Dynamics. As the saddle point
from Ry and Ryg, Table 1. Similar trifurcations have been for channel la lies neaRy(3.1), this region will play an
reported and analyzed inz8d and CH.20 important role in the dynamics of reaction 1. Excited vibrational

The occurrence of a trifurcation, two intersecting seams, rather levels of AlH,(X?A;), AIH(X?A,, v*), are resonances that are
than a bifurcation, in which th€;, component of the seam likely to sample this region of nuclear coordinate space during
disappears, has an important consequence illustrated in Figureheir decay. Thus a combination of experimental and theoretical
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AlH (X2A1, v*), excited vibrational levels of AIL{X2A,), are
likely to pass quite close to the minimum energy point on the
seam of conical intersections. Nonadiabatic recrossing could
serve to increase the observed lifetime of these resonances.
Consequently the decay of these resonances provides a valuable
laboratory for the study of nonadiabatic effects.

It will also be interesting to compare the conical intersections
in AlH, with those in BH. The BH, van der Waals complex
has been the object of previous theorefizadland experimen-
taP8studies. It has been suggested that the electronically excited
B(2s2p 2D)—H, van der Waals complex may decay radiation-
lessly to BH(X=T).28

The seam of conical intersections is shown to exhibit an
unusual trifurcation. An exclusivel@,, region of the seam of
conical intersection divides into a branch that prese@gs
symmetry and two symmetry equivalent branches that have only
Cs symmetry. Equivalently two seams of conical intersection,
one with exclusivelyC,, symmetry, intersect. The existence
of conical intersections was demonstrated by analyzing the line
integral of the derivative couplings along closed loops sur-
rounding the point of conical intersection.
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studies of the decay of these resonances would shed important
light on the nonadiabatic dynamics. It will, for example, be
interesting to see how the markédlependence of the derivative
couplings evident in Figure 4a,b,d is reflected in the propensity
for nonadiabatic dynamics in general and nonadiabatic recross-
ing in particular.

IV. Summary and Conclusions

The role of conical intersections in the ground-state reactions
Al(2PH-H, — AlH(X2A;) or AIH(X'=") + H has been
con5|dgred. T_h(_a energies and derlvatlvg com_Jpllngs were com- (27) Alexander. M. Yang, MJ. Chem Phys 1995 103 7956.
puted in the vicinity of the seam of conical intersections. It (28) vang, X.: Hwang, E.: Dagdigian, P.J.Chem Phys 1996 104,
was argued that wave packets describing the decomposition ofg8165.



